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In this work we characterize the conditions under which the Nosé approach to isothermal molecular
dynamics applied to a nontrivial system yields time averages that are equivalent to canonical phase aver-
ages, i.e., we determine when the (extended) system verifies the quasiergodic property. Our results show
that the dynamics can be tuned to produce a resonance between the characteristic frequencies of the heat
bath and those of the thermalized system by choosing a proper value for the inertia of the heat bath.
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I. INTRODUCTION

Molecular dynamics (MD) is a well-known technique
for simulating time evolution of a classical many-body
system. It consists basically in the numerical solution of
the Newton differential equations of motion. This tech-
nique, first introduced by Rahman [1] in 1964, has been
widely applied to the simulation of condensed matter. It
is well described in books [2,3] and seminal papers in
which this technique was used have been reprinted in spe-
cial volumes [4]. In the most simple and common formu-
lation of MD the particles are contained in a fixed size
and fixed shape cell which is periodically repeated in
space so as to simulate an infinite system. Cell volume,
number of particles, total energy, and total linear
momentum are conserved throughout the simulation.
Under these conditions, the time averages are considered
to be taken in the microcanonical or (N,V,E) ensemble
(although also the internal stresses are conserved, due to
rigidity of the simulation cell).

Often, however, other statistical ensembles are more
interesting, since in the simulation of a real situation oth-
er thermodynamic functions (such as temperature, pres-
sure, chemical potential) must be kept constant. In some
way these functions are conjugated with respect to those
conserved in the microcanonical ensemble. In fact to
conserve temperature we should allow the energy to fluc-
tuate in time and therefore the corresponding ensemble is
the canonical one, or (N, V,T). Similarly, to conserve at
the same time temperature and pressure, the energy and
the volume should evolve dynamically, as in the isobaric-
isothermal or (N,p,T) ensemble. If instead we want to
conserve temperature and chemical potential u, the ener-
gy and the number of particles should vary in time and
the appropriate statistical ensemble is the grand canoni-
cal or (u,V,T). Other combinations of conserved func-
tions are possible but they describe situations of lesser
physical interest.

Many modifications of the basic Verlet [5] algorithm
were proposed to simulate different statistical ensembles.
In particular, many authors derived algorithms for simu-
lating systems at constant temperature: among these the
rescaling algorithm [6], the Gauss-constrained dynamics
[7], or the stochastic collision method [8]. These formu-
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lations presented various problems such as discontinuity
in the trajectories, noncausal dynamics, or bad reproduc-
tion of thermodynamic fluctuations, if compared to the
expected values of a canonical ensemble. Such limita-
tions were overcome by a Hamiltonian approach first
proposed by Nosé [9] in 1984 and later reformulated by
Hoover [10]. Nosé dynamics has been applied to many
probes, but it is still unknown whether it produces a true
canonical distribution when applied to systems which are
extended in size. Nosé dynamics is now very important
because it is used in the ab initio- molecular dynamics
(Car-Parrinello) to keep the electrons in their ground
state.

In the present work we study the parameters which ap-
pear in the formulation so as to verify under which condi-
tions the system is in fact canonical. We therefore deter-
mine when the quasiergodic property is verified by study-
ing the characteristic frequencies of the system, the ener-
gy distribution, power spectrum, and time correlations.

The paper is organized as follows: in Sec. II we intro-
duce the formalisms proposed by Nosé [9] and Hoover
[10] and we supply an attempt of interpretation of those
schemes. In Sec. III we try to verify a posteriori the ergo-
dicity of the system by comparing the simulation results
with the theoretical estimations made in the canonical en-
semble. In Sec. IV we draw our conclusions.

II. SIMULATION IN THE CANONICAL ENSEMBLE

A. Nosé isothermal dynamics and canonical ensemble

In 1984 Nosé proposed [9] a Hamiltonian approach to
perform an isothermal dynamics (i.e., a simulation in
which the temperature is held at a given value). In this
case the author showed that under proper conditions the
N-particle system has exactly a canonical distribution in
phase space (in general, an isothermal dynamics will not
necessarily produce a canonical distribution, and con-
versely there is no unique dynamics associated to a
canonical distribution).

In his formulation, Nosé extended the usual 6N-
dimensional phase space (x;,p;) of the real system by
adding one extra variable and its conjugate momentum.
The idea of extending the system was originally presented
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by Andersen for the simulation in an isobaric-
isoenthalpic ensemble [8]. According to Nosé, the ex-
tended systems phase space is described by coordinates
(q;,7;,8,7 ), where s is the extra degree of freedom which
should describe a virtual heat bath and m, is the relative
conjugate momentum. q;, m; are related to the original
coordinates by the relations

X;=q;,
(1

Pi'_‘T-

The extended systems Hamiltonian is postulated to be
as follows:
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where Q is a parameter which controls the inertia to the
evolution of s, g is connected to the number of degrees of
freedom of the system, T, is the bath temperature, and
kp is the Boltzmann constant.

The evolution is calculated with respect of a virtual
time 7 defined as

dr=sdt (3)
and the Hamilton equations of motion are

dx;
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Nosé showed that by choosing g =3N + 1, the micro-
canonical ensemble average of any function A4 (w;/s,q;)
taken over the extended system is equivalent to a canoni-
cal average for the same function in the real system.
Moreover, if the extended system is quasiergodic one has
the relation

lim ifof‘)A (; /5,%)d 7= A (m,/5,%,)) 0
=< A(p,-,q,-)>c » (5)

i.e., the time average on a long enough trajectory from a
microcanonical simulation in the extended system gives
an estimation of the canonical phase-space average in the
real system.

At the same time Egs. (4c) and (4d) can be combined to
give
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which fixes the (thermodynamic) temperature at the
desired value.

Since when it was formulated, it was clear that the
quasiergodic hypothesis could not be studied analytically,
except for trivial systems. For instance, we know that a
system is quasiergodic if and only if the constant-energy
surface is a metrically indecomposable manifold [11].
However, as Kinchin showed, this does not happen when
we have other integrals whose value is fixed from the pro-
cedure of preparation of the sample [12]. Hence we
should deal with a weak quasiergodic hypothesis, related
to the indecomposability in an extended sense of the sub-
manifold characterized by the energy and all other con-
trollable integrals (or normal phase functions), like the
three components of the linear momentum.

For complex systems the best we can do is to verify a
posteriori whether the observed behavior is canonical or
not:

dr ’ .

. when we are not able to submit really convincing
arguments in favor of replacing the time averages by the
phase averages, it is preferable, and also simpler, to at-
tempt as the “ergodic hypothesis™ the very possibility of
such a replacement, and then to judge the theory con-
structed on the basis of this hypothesis, by its practical
success or failure [13].

To test the hypothesis we have to compare the theoret-
ical predictions with the observed behavior: for instance,
we can predict the distribution of the total energy and the
momenta of various order of the distribution of the kinet-
ic energy.

Alternatively we can verify whether the system shows
the so-called mixing property, i.e., if every correlation be-
tween dynamical variables vanishes for large time lags. It
has been demonstrated that the mixing property implies
quasiergodicity although the converse is not true [14].

Analytically we say that a system shows the mixing
property when each pair of measurable sets 4 and B of
the ergodic surface does satisfy the following relation:

tlim ule,(A)NB]=u( A)u(B) ,

where @,( A) is the set composed by the points initially
belonging to 4, propagated for ¢ seconds with the equa-
tions of motion.

B. Real time Nosé dynamics and Nosé-Hoover dynamics

As we have seen, the extended system formulation im-
plies a mapping of the real system time into a virtual time
7 through the variable 5. Since the time step used in the
calculation is constant in virtual time, the real system tra-
Jectories are described with a nonuniform (real) time step.
Nosé showed [15] that the extended system approach can
be reformulated so as to work in real time. A similar re-
formulation has been proposed by Hoover [10]. We find
Hoover’s formulation more convenient, since it requires
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no redefinition of 7, and the couple (s, ) is replaced by
a single variable § defined by

_dints) _s5_ P

g

dt s Q

In this case we need only a closed set of three equa-
tions:

(.lz:: > (73,)
ad(q;)

pi=——%(ff—§pi : (7b)
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This scheme is non-Hamiltonian and during the time
evolution a pseudoenergy is conserved

p; 2 t
=3 o F @)+ E bk T, [ (o)
where g =3N is the only value which gives the canonical
distribution.

This approach is similar, but not strictly equivalent, to
the former. If we require the trajectories in the two
schemes to have the same embedding in phase space as
geometrical loci of points, we have to use the same value
for g, in both sets of equations. However, due to the
different definition of the time in the two frames, the
same point in phase space would then be passed through
at different speed by the representative points of the two
systems. Therefore the points visited by the sample tra-
jectory (generated by the same initial condition in both
frames) would receive different weights, and in general
the time averages along the two sample trajectories would
be different and would not yield the same phase average.
To actually get equivalent results with different time
definition (weighting), we need different trajectories,
hence different equations, or different values for g.

This last fact we made clear by the work of Jellinek
[16,17], who also introduced a full class of different Ham-
iltonians in proper extended spaces, which should pro-
duce a canonical distribution in the related real space,
under ergodicity in a weighted-microcanonical sense in
the extended system. We are not aware of any practical
application of this methods in literature. The original
work presents some conclusions about the application of
this generalized approach without data to support them.
Cagin [18] tried to apply at the same time a scaling to the
momenta and to the coordinates as suggested by Jellinek,
but in this case the coupling controlled at the same time
the temperature and the pressure in a way that is not yet
well understood.

C. Interpretation of the coupling scheme

Hoover’s reformulation makes clearer the meaning of
the coupling to the thermal bath by showing that it is
equivalent to the introduction of a friction term in the
equations of motion for the m; (7b). This is similar to
what happens in the constrained algorithm [7] (Gauss
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thermostat), in which the equation of motion for the
coordinates and momenta are the same as in (7a) and (7b),
but { is a Lagrange multiplier, rather than a variable of
the system. In this case the instantaneous value of § does
not evolve following equation (7c), but is determined by
the Gauss least-constrained principle, in order to hold the
kinetic energy fixed. At each time step we can compute it
with the relation

| o
F.
}7: ‘m;
§G=_—p2._
i
zi: m;

Another general way to introduce the Nosé-Hoover
thermostat is to suggest Eqs. (7a) and (7b) as a general-
ized Newton dynamics and then to require that the Liou-
ville equation, written in the general form

af | 3fID)
—=+——-=0,
ot or
have a stable solution for the density f=f(p,q,{) in
phase space of the form
. —Hy(p,q)/kgT

f(p,q,5)xg(Lle , (8)

i.e., equivalent to the canonical phase-space distribution.
In (2) H, is the Hamiltonian of the real system

2
p.
Hy=73% 2 l'

i i

+é({q;})

and g (&) should satisfy
f g(&)dE< o

to produce a finite partition function, and g(£)>0 to
respect the positive definiteness of the density itself. In
Hoover’s frame,

g()=e

The constraint 3¢ /8, =0 determines uniquely the form
of the equation for the evolution for the § itself (7c).

Bulgac and Kusnezov showed [19-21] that this
method could be generalized adding a general kind of
friction term to both equations for q; and 7,

—&/kyT

Pi
= — (D..q: 9
-—hy(§F,(pq)) , %)

1

a¢(q,-)
5. = — — (p..d: 9b
Pi a ; hl(g)Gz(pz’qt) > ( )

q;

and requiring to have a solution to Eq. (8) of the form
f(p,q,5,6)=(1/N)exp{ —[H,+g,({)/a+g,(§)/Blkp T},

where one has the freedom to choose the constants a and
f3 and the functions g;. ]

As before one adds the constraints 3§/0{=0 and
d€ /3£ =0 and finds an expression for the functions 4;,

88, (0) )
- Sé_ ’ 2 é ag ’

h(8)
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and the following equations of motion for the extension

variables:
. OH oG; . OH oF;
t=a ap; ' 5 op; ] » §7F [ dq; FimkT ap;

Moreover we stress that Nosé-Hoover and Bulgac-
Kusnezov dynamics have the general property that at
equilibrium the phase averages of the functions h; are
vanishing and hence the friction terms do not affect the
Hamiltonian structure of the equations on average
[10,15,20,21].

This method has been compared to Nosé and Nosé-
Hoover schemes to verify if a single oscillator coupled to
a thermostat behaves as predicted.

It has been found [22] that for particular initial condi-
tions and Q values the Nosé dynamic could be nonergod-
ic, probably because it is not enough chaotic.

Nosé-Hoover equations produced trajectories with a
higher degree of chaoticity; the proper choice of the pa-
rameters and of the form of the functions involving the
Bulgac-Kusnezov approach had the highest degree of
mixing and the best reproduction of the expected distri-
bution of the observables studied [20,21].

It is important to underline that from these negative
results we cannot argue anything about the validity of the
scheme applied to systems extended in size.

There are only two results concerning extensions to a
small number of oscillators and they furnished opposite
results.

Posch [22] was not able to find critical initial condition
for a system of two soft spheres coupled mutually and to a
virtual bath, i.e., the observed behavior was always
canonical.

Conversely, Nosé found [23] a critical behavior for a
system of a few free oscillators coupled only through a
common heat bath with Hoover’s equations of motion;
the results were strongly dependent on the mutual ratios
of the characteristic frequencies of the oscillators. Simi-
lar problems should be present in the simulation of any
system in the solid phase because of the possibility of ap-
proximating any such system with a set of free oscillators,
for low enough temperature.

III. SIMULATION IN THE SOLID STATE

A. Nosé dynamics in the solid state

Nosé dynamics has been applied to many probes, but it
has never been demonstrated whether it samples properly
the canonical phase space when applied to a system ex-
tended in size.

The correct value for the temperature is easily repro-
duced in the simulations, but a few numerical experi-
ments from Nosé showed that it is not easy to reproduce
the “right” amount of fluctuations for the thermodynam-
ic state functions. (Nosé worked with a liquid [8] and
also studied the diffusion coefficient.)

With a simple theoretical argument Cho and Joanno-
poulos showed [24,25] that hard-sphere systems cannot
produce the expected behavior, because that kind of po-
tential does not guaranty the equipartition of the energy
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among the degrees of freedom.

In this work we applied Nosé equations to a system of
256 Lennard-Jones atoms in periodic boundary condi-
tions in the solid state (most of the cases T,=0.4,
p=0.973 in Lennard-Jones units or T,=50 K, p=1.61
g/cm’ for argon), and we studied the influence of the
value of the thermal inertia Q, varying it over more than
five orders of magnitude.

Nosé suggested [26] that the Q variable should be nei-
ther “too big” nor “too small.” He showed that a too
large value of Q slows down the evolution of the s vari-
able and produces only a slow feedback of the tempera-
ture. Hoover [3] argued that a too small value of Q will
produce the wrong amount of fluctuations for the kinetic
energy.

In Hoover’s frame we can rewrite Eq. (7c) in the form

2
K

-1

£=2 Kq

’

T
T

where K is the kinetic energy of the system, K is con-
nected to T, in the obvious way,

and the constant 7,

=27V Q/28kyT, ,
has the dimensions of a time, and fixes the time scale of
the thermostat’s response to the departure of the kinetic
energy from its mean value.

If 7 (or Q) goes to zero we will produce an instantane-
ous control of the temperature and a behavior identical to
the one produced by a Gauss thermostat: kinetic-energy
fluctuations are completely suppressed.

Before tracing the differences in the results obtained
with different Q values we recall that Eq. (6) can be
linearized if {(s) is near to 1, expanding s around its
mean value and defining 8s as

ds=s—(s) .
8s obeys to the simple equation

d—2(8s)+w28s=0 ,

dt?
i.e., the s variable should present a periodic behavior at a
well-defined frequency, which has been nicely estimated
by Nosé [26] in two limiting cases: for very small values

of Q

w,=1 2gkpTy/Q (10a)
and for large values of Q
@, =V g’k;To/QCy =01V gky /2Cy , (10b)

where C}, is the heat capacity at constant volume.

B. Power spectral density of s

We investigated the influence of the Q parameter
which controls the strength of the coupling between the
bath variable s and the atoms. Q was varied over several
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orders of magnitude: from 0.01 to 1000. We use
Lennard-Jones units for Q [to transform in the units used
by Nosé in his works (kJ (ps)> mol ') one has to multiply
by 4.744 our values]. All our samples contained 256 par-
ticles interacting through a Lennard-Jones potential with
parameters suited for argon (0 =3.446 A and € =125 K).
We used a time step of 0.002 34, i.e., 5X 1071 5. For all
cases we started from an fcc lattice in periodic boundary
conditions an set the thermostat temperature at 0.4 =150
K (melting point is at 84 K). This brings the first issue,
which concerns the reaching of an equilibrium state. In
fact, Nosé equations describe a thermostated system at
equilibrium, but it is not a priori guaranteed that a system
will reach the equilibrium itself.

In a typical constant-energy simulation, one knows the
average position of the atoms (the crystalline lattice) and
the distribution of the velocities (a Maxwellian). One
therefore starts from the ideal lattice and introduces ran-
dom displacements: the resulting velocities are then nor-
malized so as to reach the desired temperature. In a
short time the system reaches an equilibrium state. The
system equilibration, which consists in throwing away the
first few thousand steps, guarantees in practice that mea-
sured observables (such as pair distribution functions, ve-
locity autocorrelations, etc.) do not depend from the ini-
tial preparation but only on the thermodynamic state of
the system.

In a constant-temperature simulation, one should make
sure that the extended system (which includes the s vari-
able and its conjugate momentum) reaches equilibrium.
A procedure like the one employed in the constant-
energy case introduces, however, spurious temperature
oscillations that die out rather slowly. We found that the
most effective way to prepare a sample is to equilibrate
the system in the microcanonical ensemble at an average
temperature roughly equal to the desired one, and then to
switch the Nosé thermostat on. This can be seen in some
of the figures shown later (Figs. 1, 4, and 9) where we
have performed an equilibration of 500 time steps of
simulation in the (N, V,E) ensemble before “applying”
the thermostat. A more sophisticated method for damp-
ing the temperature oscillation caused by the initial
choice is based on a chain of Nosé thermostats, as recent-
ly suggested by Martyna, Klein, and Tuckerman [27].

After reaching equilibrium, we started monitoring the
time evolution of the relevant quantities [the s variable
and the instantaneous temperature, i.e., the kinetic ener-
gy (KE) of the atoms]. In Fig. 1 we show the time evolu-
tion of s for two values of Q. At Q=100 [Fig. 1(a)] s os-
cillates rather regularly: there seems to be a well-defined
frequency, and the oscillation amplitude does not vary
much, at least on the time scale we choose for the simula-
tion (17000 time steps). At Q=0.1 [Fig. 1(b)] the
behavior is quite different: the frequency is much higher,
which one would expect since Q plays the role of an iner-
tia in the s dynamics. In addition, the amplitude of the
oscillations varies strongly in time.

It is interesting to analyze the frequency spectrum of
these time series. We calculated the power spectral den-
sity (PSD) of s(t) either by computing the squared
modulus of the Fourier transform of the signal or using

(2)

1.08

s(t)

1.04 W

0 4000 8000 12000 16000

time step

1.2 T . — —

NI TAN

0.9

s(t)

0 1000 J 2000
time step
FIG. 1. Time evolution of s for Q =100 (a), Q=0.1 (b). The

initial 500 steps were performed at constant energy to equili-
brate the system.

parametric methods called autoregressive moving aver-
age methods (ARMA modeling).

The first algorithm is based on the fast Fourier trans-
form (FFT), a well-known numerical tool for the estima-
tion of Fourier transform of discrete time series. The
second is less common and is used in general signal pro-
cessing problems [28]. It is essentially based on the idea
that the discrete-time signal under study is the output of
a causal linear filter whose input is a white noise of in-
determinate variance. This filter is composed of two
parts: one performs a moving-average (MA) of the incom-
ing noise, the other makes an autoregression (AR) of the
output signal onto itself. Hence the filter is expressed as
a linear combination of the values of the noise and of the
output itself at previous time steps, otherwise it would not
be a causal linear one. The coefficients of the linear com-
bination are chosen in order to minimize the variance of
the input noise and from their values one can compute
directly the power spectral density of former signal.

Parametric methods yield [29] a spectrum which is
smoother and has a higher-frequency resolution than the
one computed as a squared modulus of Fourier trans-
form. At the same time, however, one needs to model the
problem, i.e., one has to choose properly the number of
terms to be used in the linear combination. Moreover the
computational cost is higher for ARMA methods, but al-
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ways suitable for real-time computation on a common
workstation.

When applied to the time evolution of s with small
values of Q, the ARMA analysis shows two peaks: one of
them scales with Q according to the predictions of Nosé’s
model discussed in the previous section, while the other is
independent on @ and corresponds to a frequency
v 4=1.320.1 THz. Figure 2 shows the results of ARMA
analysis for three values of Q: 0.2, 0.1, and 0.05. The
period of an atomic oscillation is approximately 10713 s:
one would therefore suspect that the nonscaling peak is
due to the coupling between the bath s and the atomic
coordinates: a frequency v, due to the atomic motion is
introduced into the s dynamics.

For large values of Q the behavior is different: only one
frequency band is observed, and it scales with Q. There is
therefore a critical value Q, at which the second frequen-
cy appears in the s spectrum.

Figure 3 shows a plot of the frequencies corresponding
to the peaks in the ARMA analysis as a function of the Q
values. Below Q. ~2 the nonscaling peak appears. Both
below and above Q, there is a frequency vg which scales
as predicted by Eq. (10), or vg = Q ~!/® with an observed
value @=2.04+0.04, in agreement with the expected
value a=2. For the intercepts of the regression lines in
the log-log plot we have two different values, as one can
deduce from the different proportionality factors in Eqgs.
(10a) and (10b). Their ratio gives an estimate of
C,,=(3.1£0.1)Nkg, which again is in agreement with
the expected value (3Nkg, Dulong and Petit law).

For Q <Q, the scaling frequency vy is higher than the
“atomic” frequency v, and both v, and vg are present
in the s spectrum. For Q > Q. instead one has vg <v 4
and only vy shows up in for the s spectrum.

C. Power spectral density of the kinetic energy

It is interesting to compare the behavior of s with the
corresponding kinetic energy (or instantaneous tempera-
ture) evolution. Figure 4(a) shows the kinetic-energy

; ooz =
1000 | \ Q=01 -]
'. ! Q=0.05 —--
—~ \ o
7]
2 ;
g
10 4
=]
[
S
o
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n-‘ N\
0.1} S
Lmexpecwd peaks
0.001 ‘ , . . , L
0 4 8 12 16

frequency (THz)

FIG. 2. ARMA analysis for the time evolution of s at three
values of Q: 9=0.2, 0=0.1, and Q =0.05.
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FIG. 3. Frequencies in the s spectrum (corresponding to the
peaks in the ARMA analysis) as a function of Q. Circles indi-
cate the frequencies scaling as predicted by relation (10).
Squares are unexpected values and diamonds are from Nosé
(Ref. [15]).
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FIG. 4. Time evolution of the instantaneous temperature for
Q=0.1 (a) and Q=100 (b). The initial 500 steps were per-
formed at constant energy to equilibrate the system.
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(KE) fluctuation for the case Q =0.1. The behavior of
KE for Q =100 is shown in Fig. 4(b). By comparing with
Fig. 1(a), one immediately notes that, for such large
values of Q, the s oscillations are reflected in the KE
behavior, producing a sinusoidal modulation. Addition-
al, smaller scale (KE) fluctuations are clearly visible on
top of such modulation. By comparison with Fig. 5,
which shows the KE behavior for a constant-energy
simulation, one infers that the additional fluctuations are
due to the frequencies of the atomic motion. From these
heuristic arguments one suspects that for these large
values of Q the system should be characterized by (at
least) two characteristic frequencies.

The ARMA analysis allows us to verify these argu-
ments. In Fig. 6 we show the frequency spectrum of KE
for three values of Q larger than Q,. In this case, the
peak at larger frequency does not scale, and instead there
is a smaller frequency vy which scales according to Eq.
(10). The plot of frequencies against Q, illustrated in Fig.
7, shows a nonscaling frequency v , corresponding to the
atomic vibrations, and the scaling frequency vg which ap-
pears only for all values of Q.

The global picture is therefore the following: the ex-
tended system can be ideally partitioned into two sets: the
set of the variables which describe the atoms, and the
variable s which represents the heat bath. The atomic
motion gives a frequency band centered around a charac-
teristic frequency v 4 which corresponds to the inverse of
the period of atomic oscillations. The s variable shows its
own frequency vg which depends on the value of Q.
When Q > Q. one has v¢ <v,. The time evolution of s is
well approximated by a clean sinusoidal function, while
the time evolution of KE looks like the sum of a
sinusoidal function and a faster frequency with smaller
amplitude. The spectrum of s shows only the vy peak
and the KE spectrum exhibits both the vg and v , peaks:
the perturbation of the heat bath on the atoms is shown
as a (long wavelength) modulation in the kinetic energy,
while the thermal vibrations do not influence s dynamics
since they average out. In fact, one can derive from (7c)
that
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FIG. 6. Frequency spectrum of the kinetic energy for Q =5,
Q =10, and Q =40.

dtdt’ ,

lnsmffl —ngT

where one can see that if the characteristic time for s is
longer than the inverse of the frequency of kinetic energy
K, such frequency cannot be transmitted to s.

In the opposite case (Q <Q.) the relation v¢>wv,
holds. The spectrum of both s and KE shows vg and v 4.
The characteristic time for KE is longer than the one for
s, and therefore v 4, survives to the integration. On the
other hand, Eq. (7a) shows that the velocity of the parti-
cles is directly related to the value of s, and therefore and
frequency in s is also present in KE, although for Q far
from Q, it can be (numerically) difficult to measure it.

When Q =~ Q, the “intrinsic” frequency v, is approxi-
mately equal to the “bath frequency” vy and the two
peaks merge: both s and KE show a single peak in their
frequency distributions.
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FIG. 7. Frequencies in the kinetic energy spectrum (corre-

sponding to the peaks in the ARMA analysis) as a function of
Q. Filled circles are atomic frequencies and empty circles are
those induced by s.

FIG. 5. Time evolution of the kinetic energy in a constant-
energy simulation.
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D. Energy distribution and fluctuations

It is interesting to check whether the behavior dis-
cussed in the two last sections affects in any way the re-
sults of the simulation, i.e., if there is some consequence
on the ability of the system to reproduce correctly a
canonical ensemble. A way to assess it is to check for the
energy distribution in the system.

We therefore computed the energy distribution at
different Q values. It is well known that we can write the
canonical partition function as the integral of an energy
distribution

zZ= fo‘”p(E)dE .

We can expand p around the mean value of E, which
turns out to be the mean value of H, in the simulation:
hence we define

U=(H,)

and the density p is a Gaussian of center U and width
o=(kyTC,)'"?,

z= [ " expl —(U—EP/20°1dE .

In Fig. 8(a) we plot the observed energy distribution
after 85 ns of simulation (17000 time steps) for
Q0 =0.008 < Q. (continuous line), along with the expected
Gaussian distribution obtained by assuming C, =3NKp
(dashed line). The shape of the observed distribution is a
Gaussian, but its width is too small: this means that ener-
gy fluctuations are underestimated and therefore the
measure of the specific heat C}, is wrong. In the limiting
case of @ —0 the system would be strictly isokinetic; i.e.,
at any time the kinetic energy of the system would equal
its average value: the particle motion would be such that
the velocity (averaged over all particles at any given time
step) would be a constant.

Figure 8(b) shows the energy distribution for Q =Q,: in
this case the energy distribution is well fitted by the
theoretically predicted Gaussian.

A case with Q > Q. (Q=100) is illustrated in Fig. 8(c).
From the comparison between the expected distribution
and the observed one it is clear that the energy distribu-
tion obtained from the simulation is completely wrong.
The shape of the distribution is in fact quite different
from a Gaussian, having a U-shaped form. To under-
stand why this happens we need some arguments: let us
consider a simulation in which (s )=14¢~1 (in most of
our simulations {s)=~1.05). In the Hamiltonian (2) we
can therefore develop the term log(s):

Hy=H,+Qs*+gk,Te

but along any trajectory Hy is conserved and each depar-
ture 8E of the energy from its mean value U={(H,) is
connected to the fluctuations s =8¢ by

SHy=0=38E +8K,+gkgT8S ,
where

8K, =Q8(5%) .
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FIG. 9. Comparison between the time evolution of the vari-
able s (a) and of the energy E (b). The initial 500 steps were per-
formed at constant energy to equilibrate the system.

The term 8K gives a negligible contribution to the total
fluctuation because K is of order 1k T, which is gen-
erally small in respect to the total value of the Hamiltoni-
an 6N(1kpT,). Hence, at each time step we have the ap-
proximation relation

SE=—gk,Ty0S .

This means that the graphs for s (¢) and E (¢) are equal
and opposite (turned upside down, rescaled and shifted
by proper factors), as shown in Fig. 9. As pointed before
this graph is a (shifted) sine for large Q. Since in a sine
most of the time is spent close to the maximum and
minimum values, one expects a U-shaped distribution, as
in fact we observe.

E. Convergence to the correct distributions

From what we have shown so far, one cannot rule out
the possibility that for longer simulation times the

TABLE 1. Measure of the momenta u,={(K—{(K))")
where K is the kinetic energy, together with their ideal value.
For a standard length run (85 ps) one observes that the estimate
gets worse as Q decreases.

Mo M3 Ha Ms
expected 0.0306 0.0143 0.04 0.0308
0=0.07 0.026 0.0117 0.035 0.026
0=0.05 0.019 0.007 0.025 0.018
0 =0.008 0.0165 0.006 0.021 0.013

TABLE II. Values of the momenta u, for @ <Q. (Q=0.07)
as a function of simulation length. The estimate seems not to
converge to the expected values as simulation time grows.

(Q=0.07) Ha M3 Ha Hs
expected 0.0306 0.0143 0.04 0.0308
t=7.5 ps 0.0168 0.0075 0.022 0.015
t=25 ps 0.0285 0.0127 0.036 0.026
t=285 ps 0.026 0.0117 0.035 0.026
t=250 ps 0.028 0.0123 0.036 0.026

correct energy distributions would be reproduced for
both large and small Q values. In the case of Q small the
Gaussian width could in fact grow with time. For large
Q instead one could argue that the K (¢) graph is only ap-
proximately a sine, and that for large enough time it
would lose coherence: the resulting energy distribution
could then converge to the correct one. We investigated
the time evolution of these distributions to check if this
picture is in fact correct, and if so to estimate the time
needed to obtain a correct measure.

An indication is given by higher momenta of the kinet-
ic energy distribution. We followed the work by Cho and
co-workers [24,25] and evaluated for small Q,

pr=3N(kg T?,
us=3N(kzT)*,
Pa=3IN(IN+6)(kpT)*,
ps=3N(15N+12)(kzT)* ,

where pu,=((K—{K))") and K is the kinetic energy.
We report in Table I our measure of the momenta togeth-
er with their ideal value. For a standard length run (85
ps) one observes that the estimate gets worse as Q de-
creases. In Table II we report the values of the momenta
for a given Q (0.07) as a function of simulation length.
The estimate seems not to converge to the expected
values as simulation time grows. In fact, for Q —0 one
expects an isokinetic dynamics, where all fluctuations are
suppressed regardless of the length of the simulation. In
Table III we show that instead for Q bigger but not too

10 +

1 | I— 1 O

1 .10 100 1000

total time of simulation (ps)

FIG. 10. Reduced y? of the energy distribution as a function
of the total simulation time for Q=2.5 (circles) and Q=40
(squares) for independent runs of simulation.
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TABLE III. Values of the momenta u, for Q > Q. (Q=2.5). The estimate converges to the correct

values.

(@=2.5) [22) M3 Hs Hs
expected 0.0306 0.0143 0.04 0.0308
t=2.5 ps 0.028 (—8.5%) 0.023 (+38%) 0.0375 (—6.7%) 0.037 (+16%)
t=7.5 ps 0.0289 (—6%) 0.011 (—30%) 0.0384 (—4.2%) 0.024 (—28%)
t=25 ps 0.0333 (+8%) 0.0153 (+6.5%) 0.044 (+9.1%) 0.034 (+9%)
t=85 ps 0.0319 (+4%) 0.0147 (+2.7%) 0.042 (+4.8%) 0.032 (3.8%)
t=250 ps 0.0304 (—0.7%) 0.0138 (—3.6%) 0.040 (0%) 0.0306 (—0.7%)

far from Q, (Q=2.5) the estimate converges to the
correct values. For the case Q > Q,, we also studied the
x? of the energy distribution. Figure 10 shows the re-
duced x? values as a function of the total simulation time
for independent runs. It is clearly seen that the estimate
improves as a function of run length, and it is worse for
larger values of Q. A fit of our data in a log-log plot gives
a slope of —0.4+0.1 for Q=2.5 and —0.50%0.08 for
Q =40, as expected if the estimate is statistically correct
(i.e., x* does decrease with the inverse square root of the
total simulation time). On time scales suitable for the
simulation we have correspondence between predictions

and results only for Q =Q,, while for Q >>Q_ we observe

only a slow convergence to the right results. For Q <<Q,
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we find that the fluctuations of the kinetic energy are un-
derestimated and that this estimation does not improve
even for longer simulations. We interpreted this fact
showing that in the limit of Q —0 the Nosé-Hoover equa-
tions are equivalent to Gauss isokinetic dynamics. This
result is in contrast with that of Cho and co-workers
[24,25]. An attempt to explain the discrepancy of this re-

sults can be found in a recent work of Bylander and
Kleinman [30].

F. Correlations

The mixing property requires that correlations between
functions of dynamical variables vanish for large time
lags. Hence we studied the autocorrelation of s(¢) for
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various values of Q. We find that in fact such correlation
vanishes rapidly for Q near to Q., as can be seen in Fig.
11(a). For smaller and larger values of Q instead the sys-
tem maintains memory [Figs. 11(b) and 11(c)]. For
Q >>Q, a damping of the oscillations on long time is
clearly seen [Fig. 11(d)]. We therefore extensively studied
the case of Q >>Q, trying to find a characteristic decay
time as a function of Q. We were, however, not able to
find a law for predicting such time.

IV. CONCLUSIONS

In summary, we have investigated the behavior of a
system defined by Nosé’s Hamiltonian for a large range
of values of the parameter Q which describes the cou-
pling between the atoms and the thermal bath. Such sys-
tems are interesting because they can be used in the
framework of classical mechanics to perform simulations
at constant temperature. Moreover, Nosé’s thermostat is
used in the Car-Parrinello method to keep the electrons
on the Born-Oppenheimer surface. Therefore it is impor-
tant to know the limits of applicability of the method.

We examined the time evolution of the s variable and
of the kinetic energy, and studied the frequencies in-
volved. We observed a Q-independent frequency band
due to the atomic oscillations, and a frequency which
scales with Q and originates from the dynamics of the s
variable. The two frequencies are at resonance at a criti-
cal value Q_, which can be obtained by inverting the rela-
tion

0=V'2gkpTy/Q, ,

FRANCESCO D. Di TOLLA AND MARCO RONCHETTI 48

where o is the (average) characteristic frequency of the
physical system (i.e., that of the atomic vibrations) and
the expression on the right-hand side is Nose’s approxi-
mation for the Q dependence of w at low Q.

We found that at Q_, the dynamics samples the phase
space so as to reproduce correctly, in a simulation of
reasonable length, not only the average value of the kinet-
ic energy but also its fluctuations, as expected from a
canonical distribution. A simulation of comparable
length at low values of Q tends to underestimate the fluc-
tuations, while for large Q the energy distribution is com-
pletely wrong although the average value is correct. We
investigated the dependence of the results on the simula-
tion time, and found that in fact a better convergence can
be observed for longer time in the case of large Q, while a
longer simulation does not improve the results when Q is
small.

In conclusion, the best choice is to perform a simula-
tion with Q=Q.. Q. can be determined from the
knowledge of a characteristic time of the system (typical-
ly the average time between atomic collisions).
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